
A Distributed Algorithm for Adaptive Traffic Lights Control

Sébastien Faye, Claude Chaudet, Isabelle Demeure

Abstract— In this paper, we address the problem of control-
ling traffic lights at an intersection with a spatially distributed
sensor network. We propose a sensor network architecture that
does not depend on a centralized coordinator and we separate
logically it into 4 levels of hierarchy. On this architecture, we
define and evaluate through simulations an adaptive traffic light
control algorithm. Based on two main objectives, this algorithm
decides dynamically of the green lights sequences by selecting
the movements composing each phase and its duration. Simu-
lation results show that this algorithm, if properly tuned, has
the capacity to reduce average waiting time at an intersection,
while avoiding starvation.

I. INTRODUCTION

Traffic Lights Controllers (TLC) are devices that define
a road intersection behavior by controlling when each traf-
fic light becomes red or green and for how long. These
devices traditionally use a static plan: switching sequence
and timings are pre-determined and are independent of the
traffic conditions. Adapting the order and duration of the
green lights in function of the actual traffic could prevent
for example leaving a green light when no vehicles wants
or is able to cross the intersection. Such reactive strategies
shall improve significantly the road network performance,
reducing the traffic load as well as the users journey time.

In this paper, we define a sensor as a node that has
a detection unit and generally limited capacities in terms
of energy, memory, computation power and communication.
Here, we explore how to use a spatially distributed sensor
network to dynamically control traffic lights on an isolated
intersection. This type of network is able to make decisions
without external assistance and therefore be used to control
one intersection or potentially every intersections of a city.

Classically, the literature addresses intersections that are
composed of four directions, as represented on figure 1. Each
direction is further decomposed into one left lane for vehicles
turning left and one or more right lanes for vehicles going
straight or turning right. A TLC controls, at each moment,
which movements are allowed. Each movement is usually
identified and represented by the cardinal directions of its
origin and destination. For example, on figure 1, WE denotes
the movement from West to East1.

At a given intersection, multiple movements can occur
simultaneously, provided that they do not interfere. Such a
combination of movements is called a phase. A sequence of

All authors are with the Institut Mines-Telecom, Telecom ParisTech,
CNRS LTCI UMR 5141, Paris, France (e-mails: {first.last}@telecom-
paristech.fr).

1The NEMA (National Electrical Manufacturers Association) numbering
provides a more general, numerical nomenclature that allows representing
more complex intersections.

Controller

BS

Traffic light

Sensors : arrivals and departures detection.

Base station : measures collection from sensors,
computation, traffic lights configuration decision.

BS

Possible movements

SW SN

NS NE

EW

ES

WN

WE

Fig. 1: A typical 4-lanes intersection with 2 sensors per lane.

phases in which every movement is selected at least once is
called a cycle.

The work presented here aims at letting a sensor network
dynamically compose phases based on its perception and
on the data individual sensors exchange. Section II reviews
relevant related works in Intelligent Transport Systems (ITS)
and especially adaptive traffic lights control. We then specify
a hierarchical sensor network architecture in section III and
propose a traffic lights control algorithm at a single inter-
section in section IV. Based on an intersection of Amiens
city (France), we evaluate this algorithm by simulation in
section V. The results we obtain demonstrate that an adaptive
control algorithm leads to a smaller average waiting time
than a fixed predetermined scheme. We conclude the paper in
section VI and discuss the extension of this work to multiple
intersections.

II. RELATED WORKS

A. Sensor Networks for ITS

In this paper, we chose to suppose that the sensing units
used to detect vehicles are magnetometers, as they are accu-
rate, small and (relatively) cheap ([1]). This only influences
the proposed deployment and does not represent a strong
constraint, though. Cameras could represent a better alter-
native, especially when it comes to installation-related civil
works, as they can be installed on the light directly, without
any roadwork. However, they are more easily obstructed and
pose privacy issues. A magnetometer is traditionally attached

to a wired or wireless sensor, which provides energy, mem-
ory, computation and communication units. Such sensors
constitute a kind of ad-hoc network which can be placed
precisely on each lane of an intersection and thus allows us to
study, on a small-scale, how properly articulate an algorithm.
Adaptive ITS using sensors ([2], [3], [4], [5]) generally feed
a queuing model, which requires to evaluate the number
of vehicles on each lane of an intersection or to capture
the vehicle arrival process intensity. If radars and induction
loops are typically used for such measurement, their cost
reserves them to main roads. This type of detector, based
on a magnetometer, is able to record a unique signature for
99% of vehicles ([6]), by measuring the changes on Earth’s
magnetic field when users pass over. Corredor et al. [7]
even show that such networks perform better than induction
loops, because of their responsiveness, ease of installation
and number of measurement points. Knaian [1] evokes a very
low manufacturing cost – less than $ 30 per unit – and small
size – similar to a coin – and hence confirms that sensors
can be efficient in many environments.

B. Network architecture

As illustrated on figure 1, a typical sensor network for
ITS is generally deployed around a traffic controller, or base
station, providing at least access to a global network and
hence connectivity to a control center in which operators
are able to modify the lights behavior and timing. Such
an ITS generally comprises multiple sensors deployed on
the road. The question of the number and position of the
sensors is important, as it influences the measurement quality
and defines the core of the network architecture. Monitoring
every circulation lane with a sufficient accuracy requires
to deploy either one magnetometer per lane, or to have a
360 ˚ coverage of the intersection with cameras.

Traditionally, it is considered that each incoming lane is
equipped with two sensors: one located at the light to count
departures and one other at a fixed distance before the light,
to count arrivals. Generally, it is recommended to set this
distance between 5 and 8 vehicles ([2], [3]) or depending on
the maximum authorized green time ([4]). This model can
use one sensor by lane (but results are less accurate) or one
by direction (but the model is limited by the sensor detection
range, according to [5]).

C. Traffic lights control algorithms

Some authors have examined how an autonomous inter-
section could work. The core notations used in this section
and in the rest of this paper are listed in table I.

Yousef et al. ([2]) propose to describe each movement of
an intersection as a M/M/1 queue and to select the most
appropriate phases based on non-conflicting movements. For
example, on figure 1, EW and WE movements can happen
simultaneously, as well as WN and WE, or WN and ES,
which defines 8 possible phases. The different movements
queues lengths (Ny) and the average waiting time (AWT =
Ny/λ) are determined using Little’s law. If we denote by
TG the time a light stays green and by TR the time it stays

TG Duration a given light remains green.
Ts Vehicles start-up delay when a light becomes green.
TH The average headway between discharging vehicles.

Tmax

Maximum time a light is allowed to stay green (lim-
ited by operators, usually to enhance users perception
of the network responsiveness).

Ni, Ny Queue length corresponding to lane i or to movement
y.

λ Average vehicles arrival frequency.

µ
Average frequency at which vehicles leave the inter-
section when the light is green (departure rate)

TABLE I: Notations used in this article

red, the queue length for a lane i varies according to NC
i =

NC−1
i + λTG − µTG + λTR. C represents the current cycle

number, λTG and λTR vehicles arriving during the green
and red light respectively and µGTG vehicles leave during
the green light. Using this equation, the algorithm proposed
by Yousef et al. selects combinations of movements in order
to minimize the average queue length and waiting time. The
algorithm determines all allowed movements combinations,
sums the number of vehicles in the corresponding queues,
and select, as the next phase, the movements set that has
the largest total number of vehicles. The green light time
is then calculated proportionally to the queues sizes. In the
same way, Tubaishat et al. ([3]) propose to define cycles by
ordering three set of pre-defined phases, in a greedy manner
based on queues sizes. These two contributions suppose a
conflict-free scheduling and are therefore too rigid in several
situations. In addition, considering only the queues length
may lead to famine situations, as in [2].

Zhou et al. ([4]) provide a traffic lights plan based on
movements combinations that can be performed simultane-
ously without any conflict. Their algorithm then selects the
sequence of phases in a cycle, according to the following
criteria: the presence of priority vehicles, length of periods
where no vehicle is detected, starvation, total waiting time
and queue length. This algorithm, however, is based on
unrealistic assumptions, requiring the same vehicle type and
speed.

These contributions are the closest to our work. However,
they are sometimes unrealistic or based on pre-determined
methods and suppose that the network is only used to
report measurements to a controller that takes decisions.
Nevertheless, a sensor dispose of a certain computation
power and could implement local algorithms, solving easy
problems without the help of a central decision point. Such
a local approach not only enhances responsiveness, but also
fault tolerance, as the failure of the base station, for instance,
does not cut sensors from all intelligence anymore.

Many others aspects of adaptive traffic lights control are
developed in the literature. On the one hand, large-scale
adaptive control systems can manage traffic policy of entire
cities, like SCOOT [8] or SCATS [9]. While the former mea-
sures the traffic throughput in order to send a performance
indication from a control center, the latter set lights plans
based on a hierarchical architecture. These global systems

require a global view to work: our contribution, as well as
previous presented works, can make local decisions on one
isolated intersection, potentially control every intersection
of a city or come in addition to these systems. On the
other hand, some traffic lights control algorithms based
on artificial intelligence and others theoretical tools exist.
Chen et al. ([10]) uses a genetic algorithm to optimize the
time of green lights, approaching the solution by successive
mutations. Zou et al. ([5]) define green lights times using
fuzzy logic: the green time is selected depending on the
counted vehicle number per minute. Some authors use a
cooperative network, where vehicles are able to communicate
with each other and with the traffic lights. Wenjie et al.
([11]) use a sensor network while Houli et al. ([12]) use
a multi-agent system: a multi-objective decision is voted
among the agents (vehicles). These contribution are generally
purely theoretical and elusive. In the case of a cooperative
network, it is hard to imagine, nowadays, all vehicles with an
embedded sensor. Fuzzy logic is not sufficient to represent
the real-time traffic uncertainty. Finally, the neural networks
and specifically genetic algorithms needs many computations
and their parameters are difficult to determine.

Our contribution, detailed below, provides an architecture
and a distributed algorithm, easy to implement, realistic and
does not rely on pre-determined methods.

III. TRAFFIC LIGHTS CONTROL ARCHITECTURE

Based on the results and good practices from the literature,
a sensor network that monitors and controls an intersection
should be composed of at least two magnetometer sensors
per lane. The distance between sensors should be sufficient to
have a correct sampling. Here, we want to count the number
of vehicles able to pass within Tmax seconds: we propose
to set D = N ∗ Lveh. N = Tmax−Ts

TH
is the number of

vehicles passing in theory in Tmax seconds and Lveh is the
average length of a vehicle. For simulations and for the rest
of this paper, we set Ts = 4 and TH = 2, complying with
[13], but these timings can be learnt or adjusted during the
network lifetime. These sensors shall collect, aggregate and
exchange data in order allow selecting a phases that will be
communicated to the TLC that is in charge of changing the
green lights accordingly.

The TLC only plays the role of the actuator in this
scenario and any node can perform computation of the light
plan. Similarly, the base station role is limited to the one
of a simple communication interface, providing access to
the control center that can disseminate global policies and
directives. Such a link also provides access to other sensors
that can exchange data about other intersections, preventing
for instance, cascade effects. The TLC and base station
can be located on the same physical machine, or separate
depending on the local setup.

In this scenario, we chose to organize sensors in a hi-
erarchical architecture, as represented on figure 2. Sensors
are organized in two main layers: (1) Before Light (BL)
sensors continuously collect vehicle arrivals, and are placed
at a distance chosen by the designer; (2) After Light (AL)

Controller

Interface

External
network

Traffic light

Intermediate computations (layer 3)

Arrivals detection (layer 1)

Departures detection (layer 2)

Final computations / decision (layer 4)

BL sensors

AL sensors

Fig. 2: Our hierarchical model

sensors collect departures, only when the corresponding light
is green. AL sensors have less load to handle than BL sensors
and consequently, they are in charge of data aggregation
and decision-making process. We may further divide the
set of AL sensors in two, defining an additional layer: in
case a movement involves several lanes, we must elect a
sensor that aggregates collected data for each movement.
Finally, we have to elect a master sensor that collects
each movement data and applies a decision algorithm. This
sensor only needs to inform AL sensors and to transmit the
corresponding order to the interface, which transmits to TLC
for decision application. Figure 3 represents this hierarchy
and materializes communication paths.

NE			NS		WN			WE		SW										SN										ES							EW
Layer 1

Layer 2

Layer 3

Layer 4

Fig. 3: Sensors hierarchy and communication paths

This architecture does not give particular roles to individ-
ual sensors. The sensors that belong to the highest layers
(layer 3 and 4) are elected among the set of AL sensors, and
they can be re-elected when the control center decides so, or
when the sensors themselves notice a neighbor’s failure.

A battery-operated sensor (e.g. a mobile sensor) may
also detect when its battery level decreases under a certain
threshold and send a re-election request to its neighbors.
When a layer-1 or layer-2 sensor is faulty, the layer-3 sensors
can either fall back on a redundant sensor if available, or
use statistical or pre-defined data in place of the acquired
information.

This hierarchical architecture also eases data aggregation:
each layer naturally aggregates data from the lower layer.
Arrivals can be detected and accumulated by BL sensors over

a full phase and results can be transmitted to AL sensors only
once per phase, which saves energy and bandwidth. Finally,
AL sensors may sleep when red light triggers.

IV. TRAFFIC LIGHTS CONTROL ALGORITHM

A. Philosophy

We use the architecture described above as the supporting
infrastructure for a traffic lights control algorithm. This
algorithm is designed to be flexible and easily adaptable to
any intersection configuration. Even though it takes decisions
on its own, at the level of a single infrastructure, it can
be customized or influenced by engineers and operators
that can set variables from the control center. More specif-
ically, operators can specify the desired behavior of each
intersection by uploading the set of allowed simultaneous
movements through the conflict matrix described below, or
tune user-level parameters such as the maximum allowed
green time, Tmax. If the classical algorithms usually work
at the cycle granularity, we chose to have a more reactive
approach. Instead of defining cycles, we re-evaluate the
situation at every phase and select the next phase based on
the observed system parameters. The notion of cycle does
not exist anymore in our model.

B. Conflicts management

Our algorithm uses a conflict matrix, that describes all pos-
sible cases of conflicting movements and drives phases cre-
ation. In practice, some intersections allow certain conflicts
to reduce the number of possible phases. In this case, green
light is given to low priority movements simultaneously with
higher priority movements. We consider two possibilities, to
study the algorithm behavior in two different cases: either the
conflict matrix forbids all simultaneous movements as soon
as an interaction exists (such as matrix #1 on figure 4), or
certain conflicts that do not pose safety problems are allowed
(matrix #2 on figure 4). Matrix #1 does not only allow or
forbid certain simultaneous movements, it also keeps track of
which movements are in conflict, which allows an algorithm
to treat differently the case in which a movement is selected
alone and the case in which it is selected with a conflicting
movement. Conflicting movements can be joined to a phase
as a non-priority or conditional movements, e.g. if there are
less than a certain threshold of vehicles. Such a matrix is
also necessary to represent single-lane systems, e.g. when
vehicles turning left can block vehicles going straight. The
matrices here only record allowed and disallowed conflicts,
but a larger scale can be used to represent different conflict
severities. In some cases, such a matrix is used only during
the network installation and can be called when changes
happen on the intersection (e.g. roadwork).

C. General algorithm on a single intersection

Once the architecture is in place and configuration data
such as the conflict matrix is obtained from the control center,
the different sensors start to communicate during phase P
in order to select dynamically the which movements will

NS NE SN SW WE WN EW ES

NS

NE

SN

SW

WE

WN

EW

ES

NS NE SN SW WE WN EW ES

NS

NE

SN

SW

WE

WN

EW

ES

Non-allowed	conflict Allowed	conflict. Any	conflict

Matrix	#2Matrix	#1

Fig. 4: Conflict matrices

compose phase P +1. The algorithm is composed of 7 steps
described hereafter, according to the notations in table I.

1) Count: For each lane i, each BL sensor sends the
number of arrivals during the phase P (NA

i) to its
corresponding AL sensor and resets its vehicle counter
to 0. Each AL sensor monitors the number of vehicles
departures during the phase (ND

i) and keeps track of
the number of vehicles that were present on the lane
at the beginning of the previous phase (NP

i). From
these values, it computes the number of vehicles at the
beginning of the phase P+1: NP+1

i = NP
i +NA

i −ND
i .

If others lanes are used for the same movement, it
transmits NP+1

i to the movement layer 3 leader sensor.
2) Movement aggregation: Each movement leader, y,

maintain the time elapsed since the last selection of
the movement, T y

F , to detect and prevent starvation.
It sums the NP+1

i values to get Ny , the total queue
length for movement y. Finally, it transmits these two
values to the network leader (layer 4) sensor.

3) Evaluation: Layer 4 leader computes the score func-
tion (S(y)) for each movement y according to the
following algorithm that takes into account famine and
queue length:

a) If no vehicle is present for movement y (i.e.
Ny = 0), S(y) = 0.

b) Otherwise, S(y) is computed by summing T y
F

and Ny . Each of these values is normalized
and weighted by user-defined weights (WN and
WTF

), in order to let operators favor one or
the other objective. The default values of these
weights can be WN = WTF

= 1. However, en-
gineers can redefine them according to the traffic
knowledge. For an intersection that comprises M
movements, the score of a given movement is
defined by:

S(y) = WN ·

 Ny

M∑
a=1

Na

+WTF ·

 T y
F

M∑
a=1

T a
F


This expression mixes starvation and queues
length-related criteria, which leads to good re-
sults in several situations. It can however easily

be modified to include data coming from other
intersections, policies transmitted from a control
center, or to limit explicitly starvation time.

4) Candidate phases listing: depending on the conflict
matrix, layer 4 leader computes all combinations of
conflict-free movements. A combination is a union of
several movements that are authorized by the conflict
matrix to have the green light in the same time. If
some conflicting movements are allowed, they are
added up, possibly with a reduced influence, or by
bounding for example the maximum number of cars
allowed/expected to pass in this case.

5) Phase selection: the selected phase P is the com-
bination with the highest score sum. At this stage,
additional criteria can be considered (e.g. emergency
vehicle detection, combination avoiding in case of
accident detection).

6) Define green light time: once the phase is selected,
the minimum time required to let all vehicles pass is
equal to TP = Ts + Nmax ∗ TH , where Nmax is the
number of vehicles for the lane having the greatest
number of vehicles among all selected phase lanes.
Letting all vehicles of one lane pass can lead to an
excessive waiting time for other lanes. We need to
bind this time by a static value, Tmax. In the case
of TP < Tmax, additional vehicles can arrive on AL
sensors, and make the green time increase by TH , until
eventually reaching Tmax.

7) Application: finally, layer 4 leader sends the result to
the interface for application. Moreover, it broadcasts
a reset message to layer 3 sensors concerned by the
phase, so that F y = 0 and T y

F = 0 for the next phase.
All sensors continue logging arrivals and departures.
When the phase is finished, the light stays green and
the algorithm is re-executed. Thus, in some cases, lanes
can keep green light. In other cases, yellow light starts
for an estimated duration of 4 seconds ([13]).

D. Transmission costs evaluation

A naive communication protocol in which sensors only
report to a central decision point their measurement results
would generate total arrivals + total departures notifications
per phase. With our communication protocol, there are be-
tween 3*total incoming lanes - 1 and 3*total incoming lanes
- 1 + additional vehicles transmissions per phase, without
the leaders election and self-organization protocols. Self-
organization protocols usually rely on regular broadcast of
control frames and election can be performed in O(log(α))
messages, where α is the number of nodes to elect.

E. Algorithm extensions

Here, we focus on traffic lights control; however, ex-
tensions can easily be envisioned: collision risk detection,
control center influence, addition of pedestrian management,
lanes individualization (bus or taxi network management),
etc. Moreover, we can extend this algorithm to multiple
intersections. In this case, each intersection executes its own

algorithm with its own parameters, but can anticipate vehi-
cles arrivals from neighboring intersections. Consequently,
we can imagine a new S(y) influence parameter, growing
gradually as more vehicles approach. We do not explore this
approach here. Finally, insist that S(y) is central to the phase
selection process: we can use extra weights to favor other
objectives, for example influence the user to take particular
directions.

V. SIMULATIONS

In this section we evaluate our algorithm with SUMO
(Simulation of Urban MObility, [14]). SUMO is an open-
source, discrete time, continuous space and microscopic
simulator entirely coded in C++ to model traffic flow. Specif-
ically, it allows placing sensors and retrieving their values
by connecting to a simulation, and allows creating TLC
algorithms. We evaluated the previously described algorithm
based on an intersection modeled from Amiens city (France),
on which we have counting statistics and the lights plan used
at a peak hour, between 8 am and 9 am. This allows us to
evaluate our algorithm with a realistic traffic and compare
it with an appropriate lights plan. This intersection has 4
directions and 12 possible movements: from each direction,
a vehicle can go straight, turning left or turning right. Each
simulation ran during 3600 program steps, which represents
3600 s. The results presented below are the average waiting
time computed on the 3000 first vehicles, with an arrival rate
λ = 0.8 new vehicles per second on the intersection.

A. Parameters choice

The choice of the scoring function weights (WN , WTF
)

and of the green time limit (Tmax) are expected to have a
strong influence on the performance result. We chose to eval-
uate these parameters by testing five weights configurations
(WN , WTF

): (1,0), (3,1), (1,1), (1,3), (0,1) and sixteen values
for Tmax: 15 to 90 seconds in steps of 5 seconds.

Figures 5(a) and 5(b) represent the average waiting time
at an intersection for the different parameters combinations,
when conflicts are forbidden and allowed respectively. The
inline figure represents a zoom on the average waiting times
for the different weights combination for Tmax value that
gives the best performance. We can first notice that allow-
ing conflicting movements allows reaching a better average
waiting time (28 % saving time in the represented setup).
On these figures, we can notice that the best Tmax value
is different when conflicts are allowed (35 s) or forbidden
(25 s). When conflicts are forbidden, letting all movements
happen requires more phases, which leaves less time to a
single phase. Results on the different weighting configura-
tions show that the weights configuration also depends on
whether conflicts are allowed or not. In the former case,
famine reduction should be favored, while in the latter case
it is queues lengths that should receive the higher weight.

B. Performance

Finally, for both conflict matrices, using the best values
obtained, we compare results of the adaptive algorithm

20	

40	

60	

80	

100	

120	

140	

160	

180	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	

Av
er
ag
e	

w
ai
*n

g	

*m

e	

TMAX	

Actuated	
 (1,0)	
 Actuated	
 (3,1)	

Actuated	
 (1,1)	
 Actuated	
 (1,3)	

Actuated	
 (0,1)	
 Predetermined	
 (Amiens)	

Actuated	
 (Yousef	
 et	
 al.)	

30	

40	

50	

60	

70	

80	

(1,0)	
 (3,1)	
 (1,1)	
 (1,3)	
 (0,1)	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

S(y)	
 coefficients	
 (WN	
 ,	
 WTF)	

TMAX	
 35	

(a) (WN ,WTF
) and Tmax influence, conflicts allowed

30	

40	

50	

60	

70	

80	

90	

100	

110	

120	

130	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	

Av
er
ag
e	

w
ai
*n

g	

*m

e	

TMAX	

Actuated	
 (1,0)	

Actuated	
 (3,1)	

Actuated	
 (1,1)	

Actuated	
 (1,3)	

Actuated	
 (0,1)	

Predetermined	
 (Amiens)	

Actuated	
 (Yousef	
 et	
 al.)	

30	

40	

50	

60	

70	

80	

(1,0)	
 (3,1)	
 (1,1)	
 (1,3)	
 (0,1)	

Av
er
ag
e	

W
ai
*n

g	

Ti
m
e	

S(y)	
 coefficients	
 (WN	
 ,	
 WTF)	

TMAX	
 25	

(b) (WN ,WTF
) and Tmax influence, conflicts forbidden

Fig. 5: Performance results

presented above with the ones achieved by a predetermined
lights plan designed by civil engineers and used in Amiens
city and an adaptive algorithm based on Yousef et al.
proposition ([2]), that is the work the closest to ours. As
introduced above, the predetermined light plan is designed
to respond to the traffic that we simulate.

Figures 5(a) and 5(b) show that the adaptive strategy
(denoted by actuated) achieves the best result, especially
when the traffic increases, provided that the correct value
of Tmax is selected. Moreover, our strategy is more efficient
that an algorithm based on Yousef et al. proposition, due to
starvation limitation and green time computation. Finally, we
can see that allowing movement in conflict is more effective
as long as we properly dimension Tmax.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a distributed algorithm to
control traffic lights in urban areas. We introduced a new
model that allowed us to avoid the use of a central point (BS)
for manage locally the intersection, to distribute overhead
costs and that is easy to establish. The proposed solution is
flexible in conflicts management and performs more frequent
decisions than presented works (one by phase instead of one
by cycle). Our results provide some clues on adjusting the

algorithm parameters, and show a high efficiency compared
to predetermined solutions.

In future work, our results encourage us to extend our
distributed algorithm to the multiple intersections case, to
explore how intersections can communicate between them,
in a realistic and distributed manner, and what does this can
bring. Also, introduce new elements, like public transport
lanes or pedestrian crossing, could be interesting and would
be closer to reality.

ACKNOWLEDGMENTS

The authors thank Thierry Delaporte, head of the traffic
control center of Amiens, who provided the data needed by
our simulations.

REFERENCES

[1] A. N. Knaian, “A wireless sensor network for smart roadbeds and
intelligent transportation systems,” Master’s thesis, Massachusetts In-
stitute of Technology, Jun. 2000.

[2] K. M. Yousef, J. N. Al-Karaki, and A. M. Shatnawi, “Intelligent traffic
light flow control system using wireless sensors networks,” Journal of
Information Science and Engineering, vol. 26, no. 3, May 2010.

[3] M. Tubaishat, Q. Qi, Y. Shang, and H. Shi, “Wireless sensor-based
traffic light control,” in 5th IEEE Conference on Consumer Commu-
nications and Networking (CCNC 2008), Las Vegas, USA, Feb. 2008.

[4] B. Zhou, J. Cao, X. Zeng, and H. Wu, “Adaptive traffic light control
in wireless sensor network-based intelligent transportation system,” in
72nd IEEE Vehicular Technology Conference Fall (VTC 2010-Fall),
Ottawa, Canada, Sep. 2010.

[5] F. Zou, B. Yang, and Y. Cao, “Traffic light control for a single
intersection based on wireless sensor network,” in 9th International
Conference on Electronic Measurement & Instruments (ICEMI 2009),
Beijing, China, Aug. 2009.

[6] S. Cheung, S. Coleri, B. Dundar, S. Ganesh, C. Tan, and P. Varaiya,
“Traffic measurement and vehicle classification with single magnetic
sensor,” Transportation Research Record: Journal of the Transporta-
tion Research Board, vol. 1917, no. -1, pp. 173–181, Dec. 2005.

[7] I. Corredor, A. Garcı́a, J. Martı́nez, and P. López, “Wireless sensor
network-based system for measuring and monitoring road traffic,”
in 6th Collaborative Electronic Communications and eCommerce
Technology and Research (CollECTeR 2008), Madrid, Spain, Jun.
2008.

[8] D. Robertson and R. Bretherton, “Optimizing networks of traffic
signals in real time-the scoot method,” IEEE Transactions on Vehicular
Technology, vol. 40, no. 1, pp. 11 –15, Feb. 1991.

[9] A. Sims and K. Dobinson, “The sydney coordinated adaptive traffic
(scat) system philosophy and benefits,” IEEE Transactions on Vehic-
ular Technology, vol. 29, no. 2, pp. 130 – 137, May 1980.

[10] X.-F. Chen and Z.-K. Shi, “Real-coded genetic algorithm for signal
timing optimization of a single intersection,” in 2002 International
Conference on Machine Learning and Cybernetics, vol. 3, 2002, pp.
1245 – 1248.

[11] C. Wenjie, C. Lifeng, C. Zhanglong, and T. Shiliang, “A realtime
dynamic traffic control system based on wireless sensor network,”
in International Conference Workshops on Parallel Processing (ICPP
2005), Jun. 2005, pp. 258 – 264.

[12] D. Houli, L. Zhiheng, and Z. Yi, “Multiobjective reinforcement
learning for traffic signal control using vehicular ad hoc network,”
EURASIP J. Adv. Signal Process, vol. 2010, pp. 7:1–7:7, Mar. 2010.

[13] R. Gordon, W. Tighe, U. S. F. H. A. O. of Operations, D. E. Associates,
and I. Siemens, Traffic control systems handbook. US Dept. of
Transportation, Federal Highway Administration, Office of Operations,
2005, http://ops.fhwa.dot.gov/publications/fhwahop06006/.

[14] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo -
simulation of urban mobility: An overview,” in The Third Interna-
tional Conference on Advances in System Simulation (SIMUL 2011),
Barcelona, Spain, Oct. 2011, pp. 63–68.

